Registration Form

ACI Latin America and Caribbean Green Airport recognition 2025

Submission deadline: September 5, 2025

ACI-LAC will send an acknowledgment of receipt via email after receiving each form.

• Participating Airport Information

Name: São Paulo Catarina International Business Airport

Airport Group (if applicable):

Full name: Mariana Fernanda Pérez de Almeida

Position: Operations Manager

Email: marianaalmeida@jhsf.com.br

Project's name: Puma Conservation Project

Project website (if applicable):

Official/Alternate Representative for ACI-LAC

Signature of the official/alternate representative for ACI-LAC:

Full name: Ronie Wiston Cordeiro Guimarães

Position: Director

Email: ronieguimaraes@jhsf.com.br

Recognition conditions

I accept that the information provided (executive summary and graphics/images) be published at the discretion of ACI-LAC.

Biodiversity and Nature-Based Solutions (NbS)

The **Green Airports Recognition 2025** offers a valuable platform for airports across Latin America and the Caribbean to showcase their successful efforts in biodiversity preservation and the implementation of Nature-Based Solutions (NbS) within the aviation sector. Initiatives may include (but not limited to) wetland restoration and creation, restoring ecosystems, and leveraging NbS for carbon removal. Examples of eligible practices range from in-house horticulture and airport nurseries, plantation for carbon reduction and community benefits, ecological rejuvenation of wetlands, marine life conservation efforts led by airports, and basket of measures for biodiversity.

Important note: Projects currently under implementation are eligible, provided they are mature enough to

produce measurable, quantitative outcomes in accordance with the evaluation criteria. <u>Participating airports</u> <u>or airport groups may submit only one (1) project</u>

Evaluation

Each application evaluated must meet the following recognition criteria:

1. Involvement of the airport's senior management

Demonstrate active participation and endorsement from airport senior management during any phase of the project's development or implementation.

2. Sustainability Benefit

Detailed description of the sustainability benefits of the project/program supported by quantitative data and objective sustainability indicators where possible.

Indicate the level to which the project contributes to the United Nations Sustainable Development Goals

3. Stakeholder Engagement

Present evidence of collaboration with internal teams and external partners—such as government agencies, NGOs, community groups, or industry stakeholders—in the planning and execution of the initiative

4. Innovation

Demonstrate that the project/program exceeds standard industry practices.

In addition, ACI-LAC will present a <u>Special Recognition</u> to the project demonstrating exceptional achievement. To be eligible, the participating airport must hold accreditation at any level within the Airport Carbon Accreditation (ACA) program.

The weighting of the criteria for special recognition is indicated below:

- 1. Involvement of the airport's senior management (20%)
- 2. Sustainability Benefit (30%)
- 3. Stakeholder Engagement (30%)
- 4. Innovation (20%)

Instructions to participate.

Complete and submit the form with the project information in MS Word and send to fmedela@aci-lac.aero before September 05, 2025.

1. Summary Executive (maximum 350 words)

Please include an Executive Summary of the project in a maximum of 350 words. In case your project meets the criteria of the ACI-LAC *Green Airport Recognition,* this Executive Summary will be included in the Best Environmental Practices Document that seeks to promote best practices that minimize the impact of airports on the environment, in addition to recognizing the achievements of airports in the region in their environmental projects.

São Paulo Catarina International Business Airport has developed a pioneering biodiversity conservation project that directly connects environmental protection with aviation safety. The initiative focuses on the monitoring and conservation of the puma (*Puma concolor*), a keystone predator naturally present in the Atlantic Forest ecosystems surrounding the airport.

The project's objective is to conserve the population of pumas inhabiting the airport's green area, studying this community to understand the importance and use of resources in the airport's landscape for the species' life cycle, as well as potential risks such as roadkills. Conservation is relevant not only from an environmental perspective but also as a way to reduce the risk of collisions with hares, a frequent wildlife hazard in aviation, whose population is naturally controlled by pumas.

Unlike smaller species such as the European hare (Lepus europaeus), which frequently cross airport fences and pose a hazard for aircraft operations, the puma does not enter the airside area due to its behavioral and territorial characteristics. Instead, its presence contributes to reducing the local hare population and balancing ecological chains, mitigating one of the airport's main wildlife strike risks.

The project includes non-invasive monitoring through camera traps and DNA analysis of puma feces collected near the airport fences, particularly in zones where hare activity is concentrated. The results confirmed the stable presence of pumas in the local ecosystem and identified hare fur in the samples, proving their role as natural predators of hare.

Stakeholder engagement and senior leadership involvement have been central to the initiative. Partnerships include NGO Onçafari, the neighboring gated community with its conservation program, and local highway authorities, with whom the airport is coordinating to reduce roadkill of large carnivores. The compensatory reforestation program, prioritizing native species attractive to fauna, further strengthens ecological services and habitat connectivity.

By integrating biodiversity conservation with operational risk management, this project demonstrates that conserving natural habitats and apex predators provides measurable sustainability benefits, enhances airport safety, and strengthens institutional engagement. The initiative is replicable for other airports in areas of ecological importance, representing a clear case where nature-based solutions provide operational, environmental, and social value.

2. Project Background (maximum 150 words)

Please describe the background of the project or program (Why was it necessary to develop this project/program?)

Wildlife risk assessments at São Paulo Catarina International Business Airport identified hares as a recurrent hazard within the operational area, increasing the probability of wildlife strikes. Simultaneously, camera records and environmental evidence revealed the presence of pumas in the surrounding ecosystem.

The objective of the project is to conserve the population of pumas inhabiting the airport's green area, studying this community to understand the importance and use of resources in the green area for the species' life cycle, as well as potential risks such as roadkills. Recognizing the puma's role as a natural regulator of hare populations, the airport established a biodiversity-focused strategy that connects conservation with aviation safety, strengthens ecosystem balance, and fulfills environmental commitments.

3. Project scope (maximum 50 words)

Describe the area of implementation of the project, for example: area of operations, terminal, the entire airport, etc; as well as agents involved in it: airport staff, other *stakeholders*, NGOs, environmental groups, etc.

The project encompasses airside, the total perimeter with 400 hectares of green areas—including 217 hectares of Atlantic Forest restoration—and surrounding natural habitats. It engages airport operations, environmental management, Onçafari, local communities, the neighboring residential condominium, and highway authorities, fostering a collaborative approach to biodiversity conservation and operational risk reduction.

4. Project Description (maximum 100 words)

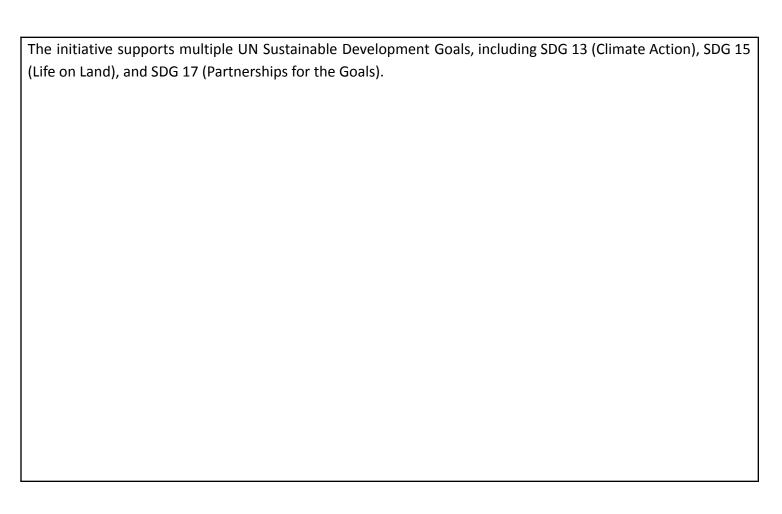
Describe how the project was implemented.

The initiative combines ecological monitoring, operational risk management, and habitat restoration. Camera traps and DNA analysis of puma feces confirmed hare fur in the samples, demonstrating the predator-prey

relationship that regulates hare populations. This finding directly links biodiversity conservation with enhanced aviation safety, as hares represent a major wildlife strike risk. With technical support from the conservation organization Onçafari, the airport advanced compensatory planting with native, fauna-attractive species. This functional planting establishes a balanced ecological chain that sustains apex predators such as the puma, ensuring the availability of food resources and long-term ecosystem stability.

5. Project results and benefits (maximum 300 words)

Describe the results of the project highlighting its achievements. Please emphasize data, for example: cost savings, recognized environmental benefits, evidence of innovation, etc.


The project delivered measurable environmental and operational outcomes. Confirmed puma presence established their ecological role as natural regulators of hare populations, directly reducing wildlife strike risks and enhancing aviation safety. This ecological balance demonstrates the value of nature-based solutions for wildlife hazard management.

Environmental benefits include the conservation of biodiversity, reinforcement of ecosystem services such as natural predation, and restoration of habitats through 217 hectares of Atlantic Forest planting. Social and institutional benefits were achieved through stakeholder engagement, uniting airport teams, NGOs, communities, and highway authorities on preventing roadkills in order to reduce the loss of biodiversity and maintain the puma population stable.

The airport's senior management has been actively engaged in the project. It is included in the annual Sustainability Goal of the leadership team, influencing performance bonuses and ensuring accountability across all departments. The board of directors approved dedicated resources for the initiative, including plans to expand research with the capture and radio-collaring of a puma to improve knowledge of its home range and identify road-crossing points.

Innovation lies in reframing biodiversity conservation as an operational safety strategy. Rather than focusing only on deterrence, the project shows that protecting predators outside the airport can stabilize ecosystems and reduce risks. It's an unique approach, in which wildlife is not posed as an enemy to airport safety, but rather an important ally.

The model is replicable to other airports in sensitive areas, aligning conservation with business and safety objectives and can promote conservating green areas as a mechanism to increase the stability of animal populations and prevent unchecked raising numbers of synanthropic and invasive exotic species as the European hare in São Paulo.

6. Graphics and Images (maximum 4)

Include a maximum of 4 graphs, including tables or photographs, with a brief description. This information will also be included in the Best Environmental Practices Document.

Figure 1: Puma concolor feces found in the surrounding area of São Paulo Catarina Airport with lots of fur.

Figure 2: Puma concolor preying on Coendou prehensilis.

Figure 3: Adult f	emale puma wit	h her offspring.
-------------------	----------------	------------------

Final ID (BLASTn)	BLASTn pseudo-score	SAMPLE EM203_01_	SAMPLE EM203_02	SAMPLE EM203_03_	SAMPLE EM203_04
Nasua nasua	81,90	0,0279	0,0000	0,0000	
Dasypus novemcinctus	100,00	0,0195	0,0000	0,0000	
Dasypus sabanicola	100,00	0,0106	0,0000	0,000	
Lepus europaeus	100,00	0,0000	0,0000	0,0037	
Lepus europaeus	100,00	0,000	0,0000	0,0028	
Nasua nasua	98,02	0,0275	0,0000	0,000,0	
Puma concolor	100,00	0,9222	1,0000	0,9896	
Puma concolor	100,00	0,9509	1,0000	0.9972	

Table 1: DNA analysis of puma feces found near the airport. It showed positive results for european hare DNA, as well as for coati and armadillo.